Data

Scientific Method

Observation
Define the Problem
Test/Experiment
Hypothesis
Collect Data/Manipulate

Uncertainty
*units (metrics)

* measuring
* sig. figs
* Data

Manipulation

Conclusion

Accuracy vs. Precision

Accuracy - closeness of results to a standard
Precision - closeness of results to each other
use same piece of equipment to collect data
Qualitative vs. Quantitative
Qualitative - more on precision than accuracy
Quantitative - numbers count and are important

Sig. Figs

Addition and Subtraction:
*least \# places after decimal
Multiplication
*places after decimal count as sig. figs
2. $5 \mathrm{~cm}=1 \mathrm{in}$

Vectors

Vectors (velocity) - has BOTH magnitude and direction
Scalars (speed) - has magnitude ONLY
*time, mass, volume

Metric System Abbr.
Mm - km - hm - dkm - m
$\mathrm{dm}-\mathrm{cm}-\mathrm{mm}-\mathrm{Mm}(\mathrm{E}-6)-\mathrm{nm}(\mathrm{E}-9)$

Mult. Component Vectors

1. $\quad 18 \mathrm{~m}$ due S
2. $22 \mathrm{~m}, 47 \mathrm{deg}$. S of W
3. $10 \mathrm{~m}, 78 \mathrm{deg}$. N of W
4. $\quad 30 \mathrm{~m}$ due E
*(W\&E) Sum of the
$V x=(0)+(-22 \cos 47)+(-10 \cos 78)+(30)=12.9 m$
*(N\&S) Sum of the
$V x=(-18)+(-22 \sin 47)+(10 \sin 78)+(0)=-24.3 m$
*Resultant $\mathrm{u}=$
$\left((12.9)^{2}+(24.3)^{2}\right)^{1 / 2}=27.5 \mathrm{~m}$

* $\theta=\tan ^{-1}(24.3)$
(12.9) $=62.0 \mathrm{deg}$
(12.9) $=62.0 \mathrm{deg}$
$R=28 \mathrm{~m}, 62 \mathrm{deg} \mathrm{S}$ of E

Kinematics
Displacement
If +it 's AWAY
If - it's TOWARD

Velocity (m / s)

Use ONLY when SPEED is CONSTANT

1. does not include acceleration
2. does not include starting and stopping in the same place

$$
v=\frac{\chi}{t}
$$

Acceleration ($\mathrm{m} / \mathrm{s} / \mathrm{s}$)

*speeding up or slowing down

$$
\mathrm{a}=\frac{v}{t}
$$

Kinematic Formulas

X Direction

$\mathrm{v}=\mathrm{v}_{0}+\mathrm{at}$
$\chi=\chi_{0}+V_{0} t+\frac{1}{2} a t^{2}$
$\chi=\chi_{0}+\frac{1}{2}\left(v+v_{0}\right) t$
$\mathrm{v}^{2}=\mathrm{v}_{0}{ }^{2}+2 \mathrm{a}\left(\chi-\chi_{0}\right)$

\underline{Y} Direction

-gt
$-\frac{1}{2} g^{2}$
.......
$-2 \mathrm{~g}($ Change $\chi(0=Y(0)$

Projectial Motion Half

* Y determines time in air
*compliment angles of 45 deg have same range

$\underline{\mathbf{x}}$	$\underline{\mathbf{Y}}$
$\chi=\mathrm{V} \chi \mathrm{t}$	$\mathrm{Y}=\frac{1}{2} \mathrm{gt}^{2}$
$\mathrm{~T}=\chi$	
V_{χ}	

Full

* 45deg has max. range

Steps:

1. $v_{0} \cos \theta_{0} / v_{0} \sin \theta_{0}$
2. Find the TIME (check Y)
3. Find the height / range

$$
\begin{array}{ll}
\underline{\mathbf{x}} & \underline{\mathbf{Y}} \\
\chi=\mathrm{V} \chi \mathrm{t} \\
\left(V_{X}=v_{0} \cos \theta_{0}\right) & \left(V_{0}=v_{0} / \mathrm{g}\right. \\
& \mathrm{Y}=\max =\frac{v_{0}^{2}}{2 g}
\end{array}
$$

Force (N)

-Causes a change in motion (causes acceleration)
-Is a VECTOR quantity
Equilibrium - no acceleration, forces cancel, "at rest"

Newton's Laws of Motion

1. An object at rest will remain at rest until acted upon by an outside force INERTIA - directly related to mass
2. Acceleration is directly related to Force indirectly related to mass $F=m a \quad\left(1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}=1\right.$ Newton)
3. Action = equal and opposite reaction -can't have only one force
$F a, b=-F b, a$

Normal Force

- able to change until breaking point of whatever it's holding
- acts perpendicularly to "holding" object
- comes from ground (except water)

Newtons

$1 \mathrm{~N}=0.225 \mathrm{lbs} \quad$ Mass is constant

$$
\begin{array}{ll}
\mathrm{F}=\mathrm{ma}-----\mathrm{Fw}=\mathrm{mg} & \mathrm{~N} \rightarrow \mathrm{~kg}(/ 9.8) \\
& \mathrm{Kg} \rightarrow \mathrm{~N}(\mathrm{x} 9.8)
\end{array}
$$

Friction (Ff)

1. two or more things must be touching
2. energy is transferred (heat, sound, etc) .
3. texture matters... NOT SURFACE AREA
$\mu=$ coefficient of friction (Ratio of parallel force to perp. Force)
$\mu=\frac{\mathrm{F}_{\mathrm{f}}}{\mathrm{F}_{\mathrm{N}}}$
$\mathrm{F}_{\mathrm{f}}=\mu \mathrm{mg} \quad \mathrm{Ff}=\mathrm{Fw}$ ((on flat surface)
$\mu=\tan \theta$ (When v is constant)
Pressure: $\mathrm{P}=$ Force/area
4. opposes motion which causes deceleration
5. static - "starting Ff" not moving (rolling) greater force than kinetic
kinetic - moving (rolling, sliding, fluid)

Equilibrium

Translational: the sum of forces equal zero
Rotational: the sum of torques equals zero
Complete: must have BOTH

Center of Gravity: center of distribution of mass
Torque
Force with leverage causes rotation
Leverage: distance from fulcrum to for
*Directly related to torque
$\tau=F$ (perp.) I

Circular Motion

Moving at a constant speed while accelerating
A $=v \rightarrow$ speed: constant
dxn: constantly changing

Centripetal Acceleration

Inward seeking $A c=\frac{v^{2}}{r}$

Centripetal Force

Causes centripetal acceleration
$\mathrm{Fc}=\mathrm{mAc}(\mathrm{F}=\mathrm{m} \mathrm{a})$
$\mathrm{Fc}=\frac{m v^{2}}{r} .(\mathrm{N})$

You MUST have cent. F to keep something moving in a circle

Centrifugal: body's interpretation of cent. F
DOES NOT EXIST \rightarrow feels inertia
Rotation: spinning on axis within object
Revolution: spinning on axis outside of object

Linear / Angular

Linear : speed $=$ distance $/$ time \rightarrow radius matters
57. $3 \mathrm{deg}=1$ RADIAN

1 rotation $=2 \pi$ Radians $=360$ degrees

Angular: speed = \# rotations or revolutions / time
\rightarrow radius does NOT matter

* by doubling the angular speed
you double the \# of rotations

Linear		Angular
$\chi(\mathrm{m})$	$\chi=r \theta$	θ (RAD)
$u(\mathrm{~m} / \mathrm{s})$	$u=r \omega$	ω (RAD / s)
a (m/s/s)	$\mathrm{a}=\mathrm{r} \alpha$	α (RAD / s / s)
F (N)	$\mathrm{Ft}=\tau$	τ (Nm)
Mass (m)		1 (mr)
$\mathrm{F}=\mathrm{m} \mathrm{a}$		$\tau=1 \alpha$

For linear

$$
\begin{aligned}
\omega & =\omega_{0}+a t \\
\theta & =\theta_{0}+\omega_{0} t+\frac{1}{2} a t^{2} \\
\theta & =\theta_{0}+\frac{1}{2}\left(\omega+\omega_{0}\right) \\
\omega^{2} & =\omega_{0}^{2}+2 a\left(\theta-\theta_{0}\right)
\end{aligned}
$$

See other corner $\quad \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} a t^{2}$

Rotational Inertia

Resistance to begin or stop rotation

- Depends on amount of mass AND where it is placed

Solid Sphere $\rightarrow 2 / 5 \mathrm{mr}^{2} \quad$ Solid Disk $\rightarrow 1 / 2 \mathrm{mr}^{2}$
Hollow Sphere $\rightarrow 2 / 3 \mathrm{mr}^{2}$ Hollow Disk $\rightarrow 1 \mathrm{mr}^{2}$

- Velocity is indirectly related to Inertia
- Shape of object spinning makes the difference while spinning

3 Forces acting upon an object in circular motion

1. Centripetal Acceleration (Ac)
2. Angular Acceleration (α)
3. Linear Acceleration (a)

Conservation Laws

Momentum (N s)

Moving inertia (Newton's 2nd law)
Momentum IS inertia...Inertia is NOT momentum
Momentum is DIRECTLY related to mass and speed
$\mathrm{p}=\mathrm{mv}$ (N s)
Causes body to want to fly off tangent

Impulse
A change in momentum (how you feel p change)
Force : $\mathrm{F}=\mathrm{ma} \rightarrow \mathrm{F}=\frac{\mathrm{m} \Delta \mathrm{v}}{\Delta \mathrm{t}}$
Time : * hidden variable*
$\mathrm{F} \Delta \mathrm{t}=\mathrm{m} \Delta \mathrm{v}=\Delta \mathrm{p}$

Conservation of Momentum

In the absence of an external force, the total momentum of a system is constant $\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}$

Work (J)

* Need to apply force $\mathrm{W}=\mathrm{Fd}$
* implies motion

Power (watt -- w)

$P=\frac{w}{t}=\frac{\mathrm{fd}}{\mathrm{t}}$
$\frac{\mathrm{J}}{\mathrm{s}}=1 \mathrm{w}=\frac{\mathrm{Nm}}{\mathrm{s}}=\frac{1 \mathrm{kgm}^{2}}{\mathrm{~s}^{2}}$
1 horse power = 746 w

Energy

Ability to do work
Mechanical: energy of motion or position
Kinetic (K): motion
$K=\frac{1}{2} m v^{2}$
Potential (U): position
$\mathrm{U}=\operatorname{mgh}(\mathrm{J})(\mathrm{W}=\mathrm{FD})$
When not given distance...(or force)
When not given distance...(or force)
$W=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}(W=\Delta K)$
(K final) - (K initial)

Conservation of Energy

Energy change from one to the other w/o any net loss
$\mathrm{U}_{\mathrm{TOP}}=\mathrm{K}_{\text {BOT }}\left(\mathrm{mgh}=\frac{1}{2} \mathrm{mv}^{2}\right)$

Wave Motion

Simple Harmonic Motion

A repeating motion in which the acceleration is directly related to the displacement (distance away from the equilibrium) and always directed towards equilibrium.
$T=2 \pi \sqrt{\frac{l}{g}} \quad f=1 / T$

Cosine Curves

$Y=A \cos B(x-C)+D$
$A=$ amplitude (0): how much energy it has
Cos B = period (2 PIE / t) : time, 1 oscillation
C = horz. Shift : human error
D = vert. Shift : distance, to x-axis

Waves

* Graphed SHM, transfer of energy

Vibration: WORK to get energy
Propagates: what energy moves through
Mechanical (light) Electromagnetic (sound)
Needs a medium does NOT need a medium
More dense - better less dense - better

Mechanical Waves

Transverse: medium vibrates perp. to energy Most common ex. Guitar string, slinky Longitudinal: medium vibrates para. to energy Has compressions ex: sound Surface: both para. and perp. to energy "physics bob" ex: earthquakes, waves

Principle of Superposition

Constructive Interference: added
Deconstructive: subtracting (adding negatives)
$V=\frac{\lambda}{T} \quad V=\lambda f$

Standing Wave

A continuous wave train of equal amplitude (RAD), wavelength (m), and frequ. (Hz) (/sec) in the same medium creating nodes and antinodes.

Boundary: change in medium
(part of energy gets reflected, part gets absorbed)
rigidity: how much energy gets ABSORBED
close rigidity \rightarrow more absorbed
different rigidity \rightarrow more reflected

Interference in Diffraction

Crest + crest $=$ antinode Crest + troph $=$ node

Sound

A range of longitudinal wave frequ. to which the human ear is sensitive

Infra sonic sonic spectrum ultra sonic
(Below 20 Hz) $\quad(20 \mathrm{~Hz}-20,000 \mathrm{~Hz}) \quad(20,000 \mathrm{~Hz}+)$

1. production : needs vibration
2. transition : needs a medium \rightarrow air
3. reception : must be heard
```
    V sound = 340 m/s
    V sound = 331 + . 6 (Temp.)
```

Intensity: measurable
How loud a sound is * the time of flow of energy per unit area
$\mathrm{I}=\frac{\mathrm{Pow}}{\mathrm{Amp}^{-}} \quad \mathbf{P}=\mathrm{W} / \mathrm{t}$

Intensity is DIRECTLY related to amplitude
Damping: further you get from the center \rightarrow quieter it will be
Inverse Square Law: $\mathrm{I}_{1} \mathrm{r}_{1}^{2}=\mathrm{I}_{2} \mathrm{r}_{2}{ }^{2}$

Volume (B) : subjective (decibels)
Relative Intensity Level \rightarrow loudness level
Volume is DIRECTLY related to Intensity
Volume is DIRECTLY related to Frequency
f standard $=1,000 \mathrm{~Hz}$

Intensity Range

Threshold of hearing $\left(\mathrm{I}_{0}\right)=1 \times 10^{-12} \mathrm{w} / \mathrm{m}^{2}$
Threshold of sound $=1 \mathrm{w} / \mathrm{m}^{2}$
$\beta=10 \log \frac{\mathrm{I}}{1 \times 10^{-12} \mathrm{w} / \mathrm{m}^{2}}$
"How many powers of 10 are in that number?"
Decibel $=\frac{\mathrm{w} / \mathrm{m}^{2}}{\mathrm{w} / \mathrm{m}^{2}}$

Pitch and Tone

I \rightarrow volume $f \rightarrow$ pitch
Notes and tones: pitch with recognizable frequencies Laws of Pitch:

1. f is INDIRECTLY related to length
2. f is DIRECTLY related to tension (Ft)
3. f is INDIRECTLY related to diameter (d)
4. f is INDIRECTLY related to density (D)

Beats: the resultant interference pattern of 2 notes
close in frequency but not exact
Creat nodes (sharps and flats)

Doppler Effect: the apparent change in frequency of a sound due to the relative motion of either the observer or the source of both

Resonate: when you cause something to vibrate at its natural frequency
Music \rightarrow repeating wave pattern
Noise \rightarrow no repeating wave pattern
Consonance \rightarrow sounds GOOD
Dissonance \rightarrow sounds BAD

Decibel:

$\underline{\underline{\mathbf{1}}}$	$\underline{\mathbf{B}}$
1×10^{-12}	$\underline{\mathbf{0 d b}}$
1×10^{-11}	$\underline{\mathbf{1 0} \mathbf{d b}}$
1×10^{-10}	20 db
\ldots.	
1×10^{-2}	100 db
1×10^{-1}	110 db
1	120 db

Natural Frequencies $l=170 / \mathrm{Hz}$

Brass/String n	name	synm	wavl (λ)	1	f
f	Fund	$1^{\text {st }}$ har.	$2 l$	$1 / 2 \lambda$	$v / 2 l$
$f 2$	$1^{\text {st }} \mathrm{ov}$.	$2^{\text {nd }}$ har.	l	λ	v / l
$f 3$	$2^{\text {nd }} \mathrm{ov}$.	$3^{\text {rd }}$ har.	2/3l	$3 / 2 \lambda$	$3 v / 2 l$
$f 4$	$3{ }^{\text {rd }} \mathrm{ov}$.	$4^{\text {th }}$ har.	1/2l	2λ	$2 v / l$
$f_{n}=\frac{n v}{2 l}$		$h n=\frac{2 l}{n}$		$f_{n}=N f_{1}$	

Woodwind n	name	synm	wavl (λ)	1	f
f	Fund	$1^{\text {st }}$ har.	$4 l$	$1 / 4 \lambda$	$v / 4 l$
$f 2$	$\ldots .$.	$\ldots \ldots$.	$\ldots \ldots$	$\ldots .$.	$\ldots .$.
$f 3$	$1^{\text {st }} \mathrm{ov}$.	$2^{\text {nd }}$ har.	$4 / 3 l$	$3 / 4 \lambda$	$3 v / 4 l$
$f 4$	$\ldots .$.				
$f 5$	$2^{\text {nd }} \mathrm{ov}$.	$3^{\text {rd }}$ har.	$4 / 5 l$	$5 / 4 \lambda$	$5 v / 4 l$
$f_{n}=\frac{n v}{2 l}$					
		$h n=\frac{2 l}{n}$			

Instruments

String Produced by: plucking string, bowing
Change pitch : length, diameter, tension, density
Brass Produce by : buzzing mouth piece
Change pitch : length of pipe (valves), buzzing
Woodwind Produced by : reed vibrating
Change pitch : pads, holes
Edge tones: narrow streams of air split by edge
Helmholtz Resonance: edge tone with bottle (open hole)

Light

$\underline{\text { Particle }}$	$\underline{\text { Wave }}$
+ Newton said so	+ Thomas Young - 2 slit ex
+ Beams / Wave	+ reflection, refraction,
+ travel in straight lines	diffraction, interference
+Hertz - light is energy	
+ Einstein - wave particle duality	

Polarized Light: Light oriented to one plane (calc.)
Liquid Filter Display: lets only one degree of light in

Visible Spectrum: Radio * Micro * Infrared * Ultraviolet * Xrays* Gamma
Big wavelength $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ Small wavelength

Red Orange Yellow Green Blue Indigo Violet
Transparent: see through it and light passes (Windows, glass)
Translucent: can NOT see through it, light passes (frosted glass)
Opaque : can NOT see through it, NO light passes Source: makes and emits light
Luminous: sun
Luminate: moon
Light Year: takes 8.3 min. to get light from sun Dispersion: breaking up light into colors (prism)

Colors

Cones in eye pick up 3 primary colors of light
Additive

Primary	Secondary
BLUE	YELLOW
RED	CYAN
GREEN	MAGENTA
* More than one light source	

Subtractive

Primary	Secondary
YELLOW	BLUE
CYAN	RED
MAGENTA	GREEN
*only one light source	
* darker colors	

Shades of Colors

Hue: proportion of color
Saturation : amount of white mixed with color
Brightness : amount of black mixed with color

Reflection

Smooth: $\theta_{i}=\theta_{r}$
Diffuse: "scatters light" obeys laws still

Refraction

Index of Refraction $n=\frac{3 \times 10^{8}}{v}$
(speed in whatever medium)
Air : 1. 00 Water : 1.33 Glass : 1.52

Snell's Law

* n is INDIRECTLY related to θ
* n is INDIRECTLY related to speed
* v is DIRECTLY related to θ
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

Lasers

Critical angle $\left(\theta_{c}\right)$: the θ_{1} that produces the angle that is larger than θ_{c}. Total Internal Reflection: no refraction

Optics

Reflection: mirrors
Refraction: lenses

Mirrors

Concave: converging and upside down after foc. Pt
Convex: diverging, upright and smaller

If you have this	Do this	To get this
N	$\times .225$	lb.
Ib.	$\div .225$	N
N	$\div 9.8$	Kg
Kg	$\times 9.8$	N
Ib.	$\times .454$	Kg
Kg	$\div .454$	lb.

Buddy rides his bike off the top of a 24.5 m high building going $6.25 \mathrm{~m} / \mathrm{s}$. What will his range be?
Handle projectile motion problems in two columns representing the two directions (independent of each other)

If you're looking for " x ", start in the " y " so find " t ", (so vice versa)

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{x} \text { finish here } \\
v_{x}=6.25 \\
\chi=? \\
\chi=v_{x} t
\end{array} \\
& =(6.25)(2.236) \\
& =13.9754 \\
& \chi=14.0 \mathrm{~m}
\end{aligned}
$$

Y start here
$Y=24.5$
$\mathrm{g}=9.8$
$t=\sqrt{\frac{2 y}{g}}$
$=\sqrt{\frac{2(24.5)}{9.8}}$
$=2.236$
Notice that " t " is the link between the two directions

Ex- A football is kicked at $18 \mathrm{~m} / \mathrm{s}, 42^{\circ}$ above the horizontal ground. Find both its maximum height and range? set your problem up in two columns again

	$\underline{\mathbf{x}}$ do the components first	$\underline{\mathbf{Y}}$
	$v_{x}=V_{\cos \theta}$	$v_{y}=V_{\sin } \theta$
	$=18 \cos 42$	$=18 \sin 42$
	$=13.376$	$=12.044$
	For range	The Y will always give you " e "$t=\frac{2 v_{0}}{g}=\frac{2(12)}{9.8}$
	$\chi=v_{x} t$	
	$=(13.4)(2.46)$	$=2.458$
	$=32.879$	$Y_{\text {max }}=\frac{v_{0}{ }^{2}}{2 g}=\frac{(12)^{2}}{19.6}$ for height
	$\chi=33 \mathrm{~m}$	$=7.3469$
	$Y_{\max }=7.3 \mathrm{~m}$ Make sure you use the correct speeds in the correct places!!!	

5.

$$
\begin{aligned}
& \mu=22 \\
& F_{f}=\mu F_{N}=(0.22)(60)=13.2 \\
& F_{f}=13.2 \mathrm{~N} \\
& v_{0}=8.96 \frac{1}{3} \\
& v=\theta \\
& F_{w}=60 N \\
& m=6.122 \mathrm{~kg} \\
& F_{f}=\text { ? } N \\
& a=- \\
& \chi_{0}=0 \\
& \chi=? m \\
& t=? \Delta \mu \\
& a=\frac{F_{f}}{M}=\frac{13.2}{6.122}=2.156 \ldots \\
& v^{2}=v_{0}^{2}+2 a\left(\chi-\chi_{0}\right) \\
& \frac{-v_{0}{ }^{2}}{2 a} x=\frac{-(8.96)^{2}}{2(-2.156)} \\
& =18.61815 \\
& \chi=18.6 m \\
& v=v_{0}+a t \\
& \frac{-v_{0}}{a}=t=\frac{-8.96}{-2.156} \\
& =4.1558
\end{aligned}
$$

$\Sigma F \uparrow=\Sigma F \downarrow$

$(55 \sin 35)+(45 \sin 75)=65+35$ $75.013=100$

$$
\begin{gathered}
\therefore F \text { is "up" } 25 \mathrm{~N} \\
\Sigma \tau_{c}=\Sigma \tau_{c c}
\end{gathered}
$$

(65) $(1.5)+(35)(5)=(45 \sin 75)(4)+(25)(l)$ $3.9453 l$
$F=25 N$, up, $39 . M$ from left end

$$
\begin{aligned}
& \chi_{0}=0 \\
& \chi=12 \\
& v_{0}=15 \\
& v=0 \\
& a=- \\
& M=6.73 \\
& F_{w}=66\left(F_{N}\right) \\
& \mu=?
\end{aligned}
$$

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a\left(\chi-\chi_{0}\right) \\
& \frac{-v_{0}^{2}}{2 \chi}=a=-\frac{15^{\circ}}{2(12)}=9.375 \\
& F_{f}=m a=(6.73)(9.375) \\
& =63.09 \\
& \mu=\frac{F_{f}}{F_{N}}=\frac{63.09}{66}=.95596 \\
& \mu=0.956
\end{aligned}
$$

4.

Ex- How much momentum does a 6.0 kg object have if it is moving at $3.0 \mathrm{~m} / \mathrm{s}$? What force would it take to bring it to rest in 2.0 seconds?
$\mathrm{p}=? \mathrm{Ns}$
$\mathrm{m}=6 \mathrm{~kg}$
$\mathrm{v}=3 \mathrm{~m} / \mathrm{s}$
$p_{0}=18$
$p=\theta$
$\mathrm{F}=?$
$\mathrm{t}=2$
$p=m v=(6)(3)=18$
$p=18 \mathrm{Ns}$
$=\Delta p=-18$
$\Delta p=F \Delta t$
$F=\frac{\Delta p}{\Delta t}=\frac{-18}{2}=-9$
$F=9.0 N$ in opposite dxn

Total Internal Reflection

As you move through each example, notice the angle of incidence gets larger and large also note that his cause the angle of refraction to increase as well. There will come a pair the angle of incidence causes the angle of refraction to be ninety degrees.... That is the refracted light seems to go spread out along the boundary (situation \# 4 below). The angle of incidence that causes this to happen is called 'critical angle' for that medium if the angle of incidence arrives any larger than the critical angle (situation \#5)

Ex. An 18 cm flywheel slows from $8.0 \mathrm{rev} / \mathrm{sec}$ to $3.0 \mathrm{rev} / \mathrm{sec}$ over a 3.5 second time interval. Find its angular deceleration \& its angular \& linear displacements.

$\omega_{0}=8.0 \frac{\mathrm{rev}}{\mathrm{sec}}=50.26 \frac{\mathrm{rad}}{\mathrm{sec}}$ Must convert to RAD to do this problem	$\omega=\omega_{0}+\alpha t$
$\omega=3 \mathrm{rev} / \mathrm{sec}=18.85 \mathrm{RAD} / \mathrm{s}$	$\frac{\omega-\omega_{0}}{t}=\chi=\frac{18.8-50.2}{3.5}$
$\mathrm{t}=3.5 \mathrm{sec}$	$=-8.9742$
$\alpha=-? \mathrm{RAD} / \mathrm{s}^{2}$ simple kinematics	$\theta=\theta_{0}+\frac{1}{2}\left(\omega=\omega_{0}\right) t$
$\theta_{0}=\theta$	$\theta=120 \mathrm{RAD}=120.9425$
$\theta=?$ RAD	$=21.7696$.
$\chi=?$ RAD	
Ang. To LIN. conversion $\chi=? M$ $\chi=22 \mathrm{~m}$	

6.

(Open)

$$
l=0.86 \mathrm{~m}
$$

$\mathrm{f}_{1}=\frac{\mathrm{Nv}}{2 \mathrm{l}}=\frac{(1)(344)}{2(.86)}=200$
$v=344 \mathrm{~m} / \mathrm{s}$
$\mathrm{f}_{1}=200 \mathrm{~Hz}$
$\mathrm{f}_{1}=? \mathrm{~Hz}$
$\mathrm{f}_{1}=\frac{\mathrm{Nv}}{4 \mathrm{l}}=\frac{(1)(344)}{2(.86)}=100$
(closed)
$\mathrm{f}_{1}=100 \mathrm{~Hz}$
$\mathrm{f}_{1}=$? Hz

